ECE 307
Spring 2018
Prof. George Gross
Room 4052 ECEB

Homework 4

Date due: Friday, February 16, 2018

1. Place each of the following $L P \mathrm{~s}$ into standard form and define the corresponding $\underline{\boldsymbol{A}}$, $\underline{\boldsymbol{b}}$ and $\underline{\boldsymbol{c}}$ arrays
(a)

$$
\begin{aligned}
& \max \quad 45 x_{1}+15 x_{3} \\
& \text { s.t. } \\
4 x_{1}-2 x_{2}+9 x_{3} & =22 \\
-2 x_{1}+5 x_{2}-x_{3} & \geq 1 \\
x_{1}-x_{2} & \leq 5 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

(b)

$$
\begin{array}{ll}
\max & 15\left(x_{1}+2 x_{2}\right)+11\left(x_{2}-x_{3}\right) \\
\text { s.t. } & \\
& 3 x_{1} \geq x_{1}+x_{2}+x_{3} \\
& 0 \leq x_{j} \leq 3 \quad j=1,2,3
\end{array}
$$

2. The following plot shows several feasible points in a linear program and contours of its objective function.

(a) Solve the problem graphically
(b) Determine whether the following sequence of solutions P1, P7, and P6 could have been generated by the application of the simplex algorithm to the corresponding $L P$ problem in standard form. Provide the rationale for your answer.
3. Problem 2.30 in Ravindran, p. 67
4. Problem 2.31 in Ravindran, p. 68
5. Problem 2.32 in Ravindran, p. 68
6. Consider the linear program

$$
\begin{aligned}
& \max 4 y_{1}+5 y_{2} \\
& \text { s.t. } \\
& -y_{1}+y_{2} \leq 4 \\
& y_{1}-y_{2} \leq 10 \\
& y_{1}, y_{2} \geq 0
\end{aligned}
$$

(a) Show graphically that the model is unbounded.
(b) Add slacks y_{3} and y_{4} to place the model in standard form.
(c) Starting with an all slacks basic feasible solution, apply simplex algorithm to establish that the original model is unbounded.
7. Consider the $L P$

$$
\begin{aligned}
\max & x_{1} \\
\text { s.t. } & \\
6 x_{1}+3 x_{2} & \leq 18 \\
12 x_{1}-3 x_{2} & \leq 0 \\
& x_{1}, x_{2}
\end{aligned} \leq 0
$$

(a) Solve the problem graphically.
(b) Add slack variables to place the model in standard form.
(c) Apply the simplex algorithm to compute an optimal solution starting with an all-slack-variables basic feasible solution.
8. The NCAA is making plans for distributing tickets to the upcoming regional basketball championships. The up to 10,000 available seats will be divided between the media, the competing universities, and the general public. Media people are admitted free, but the NCAA receives $45 \$$ per ticket from universities and $100 \$$ per ticket from the general public. At least 500 tickets must be reserved for the media, and at least half as many tickets should go to the competing universities as to the general public. Within these restrictions, the NCAA wishes to find the allocation that raises the most money. An optimization is given in the table.

solution variable (max) $=\$ 775,833.333$								
variable sensitivity analysis								
Name	optimal value	basic nonbasic	lower bound	upper bound	objective coefficient	reduced objective	lower range	upper range
x_{1}	500.00	basic	0.000		0.000	0.000	-	81.667
x_{2}	3166.667	basic	0.000		45.000	0.000	-200.000	100.00
x_{3}	6333.333	basic	0.000		100.000	0.000	45.000	
constraint sensitivity analysis								
name	type	optimal dual	r.h.s. coefficient	slack	lower range	upper range		
seats	\leq	81.667	10000.000	0.000	500.000			
other	\geq	-36.667	0.000	-0.000	-4750.000	9500.00		
media	\geq	-81.667	500.000	-0.000	0.000	10000.000		

(a) Formulate this problem as an $L P$. Explain each decision variable, identify the coefficients in the objective function and state each constraint.
(b) Interpret the left-hand-side coefficients of the decision variables in the constraints
9. Consider the statement in the problem 8 above. Answer the following questions
(a) What is the marginal cost to the NCAA of each seat guaranteed for the media
(b) Suppose that there is an alternative arrangement of the dome where the games will be played that can provide 15,000 seats. How much additional revenue would be gained from the expanded seating? How much would it be for 20,000 seats?
(c) Since television revenue provides most of the income for NCAA events, another proposal would reduce the price of general public tickets to $\$ 50$. How much revenue would be lost from this change? What if the price were \$ 30 ?
(d) Media-hating coach Sobby Day wants the NCAA to restrict media seats to 20% of those allocated for universities. Could this policy change the optimal solution? How about 10% ?
(e) To accommodate high demand from student supporters of participating universities, the NCAA is considering marketing a new "scrunch seat" that consumes only 80% of a regular bleacher seat but counts fully against the "university \geq half public" rule. Could an optimal solution allocate any such seats at a ticket price of $\$ 35$? At a price of $\$ 25$?
10. Professor Proof is trying to arrange for the implementation in a computer program of his latest operations research algorithm. He can contract with any mix of three sources for help: unlimited hours from undergraduates at $4 \$ /$ hour; up to 500 hours of graduate students at the rate of $10 \$ / h o u r$, or unlimited help from professional programmers at $25 \$ / h o u r$. The full project would take a professional at least 1000 hours but graduate students are only 0.3 as productive, and undergraduates, 0.2 . Proof only has 164 hours of his own time to devote to the effort, and he knows from experience that undergraduate programmers require more supervision than graduate

solution variable (min) $=24,917.647$								
variable sensitivity analysis								
name	optimal value	basic/ nonbasic	lower bound	upper bound	objective coefficient	reduced objective	lower range	upper range
x_{1}	82.353	basic	0.000	∞	4.000	0.000	-4.444	5.000
x_{2}	0.000	non- basic	0.000	5000	10.000	2.235	7.765	∞
x_{3}	983.529	basic	0.000	∞	25.000	0.000	20.000	31.333
constraint sensitivity analysis								
name	type	optimal dual	rhs coefficient	slack	lower range	upper range		
professional	\geq	25.882	1000.000	-0.000	164.000	1093.333		
proof	\leq	-5.882	164.000	0.000	150.000	1000.00		
graduate	\leq	0.000	500.000	500.000	0.000	∞		

students, who, in turn, require more than professionals. In particular, he estimates that he will have to invest 0.2 hours of his own time per hour of undergraduate programming, 0.1 hour of his time per hour of graduate programming and 0.05 hour of his time per hour of professional programming. The table above summarizes the optimization output.
(a) Briefly explain how this problem can be modeled by the following $L P$

$$
\begin{array}{ll}
\text { min } & 4 x_{1}+10 x_{2}+25 x_{3} \\
\text { s.t. } & \\
& 0.2 x_{1}+0.3 x_{2}+\quad x_{3} \geq 1,000 \\
& 0.2 x_{1}+0.1 x_{2}+0.05 x_{3} \leq 164 \\
& x_{2} \leq 500 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

(b) Identify the decision variables, state the objective function and formulate each constraint.
(c) Interpret the left-hand-side coefficients of each decision variable in part (a) as inputs and outputs of resources per unit activity.
11. Problem 4.23 in Ravindran, p. 214
12. Problem 4.13(a) in Ravindran, p. 210
13. Problem 4.15 in Ravindran, p. 211
14. Problem 4.16 in Ravindran, p. 211
15. Problem 4.17 in Ravindran, p. 211
16. For each of the $L P \mathrm{~s}$ in (a) - (d)
(i) state the corresponding dual problem of the primal as given
(ii) state the two sets of complimentary slackness conditions.
(a)

$$
\max \quad 44 x_{1}-3 x_{2}+15 x_{3}+56 x_{4}
$$

s.t.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =20 \\
x_{1}-x_{2} & \leq 0 \\
9 x_{1}-3 x_{2}+x_{3}-x_{4} & \leq 164 \\
x_{1}, \ldots, x_{4} & \geq 0
\end{aligned}
$$

$\min \quad 5 x_{1}+x_{2}-4 x_{3}$
s.t.

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =19 \\
4 x_{2}+8 x_{4} & \leq 55 \\
x_{1}+6 x_{2}-x_{3} & \geq 7 \\
x_{2}, x_{3} \geq 0, \quad x_{4} & \leq 0
\end{aligned}
$$

(c)
$\max \quad 19 y_{1}+4 y_{2}-8 z_{2}$
s.t.

$$
\begin{aligned}
11 y_{1}+y_{2}+z_{1} & =15 \\
z_{1}+5 z_{2} & \leq 0 \\
y_{1}-y_{2}+ & z_{2}
\end{aligned}
$$

(d)
$\max \quad 10\left(x_{3}+x_{4}\right)$
s.t.

$$
\begin{aligned}
& \sum_{j=1}^{4} x_{j}=80 \\
& x_{j}-2 x_{j+1} \geq 0 \quad j=1,2,3 \\
& x_{1}, x_{2} \geq 0 \quad x_{3}, x_{4} \quad \text { unspecified }
\end{aligned}
$$

